MELBOURNE, Australia, ISLAMABAD, NEW DELHI, and WASHINGTON — A number of countries in the Asia-Pacific region are caught up in the global hypersonic and directed-energy weapons race, with these regional powers having either developed or publicly stated intentions to develop such technology.
Defense News has contacted regional government and military officials, businesses, and analysts to find out who is keeping pace in the worldwide contest.
China
Unsurprisingly, China is one of those countries that is focused on both fields. It is widely acknowledged to be the leader in the field of hypersonic systems, having already fielded such weapons in the form of the DF-17 hypersonic glide vehicle.
The DF-17 HGV made its first public appearance at a military parade held in China’s capital Beijing in late 2019. The weapon appears to use a standard ballistic missile booster in its first stage for the initial boost of a glide vehicle, which is used to attack a target following reentry.
The DF-17s at the parade were mounted on a wheeled, five-axle transporter-erector-launcher. This makes the system road-mobile like much of the ballistic missile arsenal of China’s People’s Liberation Army. This could potentially complicate any attempt by an adversary to strike the systems prior to launch.
U.S. government sources have said China carried out several tests of HGVs, including the DF-17, since 2014. The DF-17 is the first system of its type known to be operational in the world, although several other nations including the U.S. are developing similar systems.
In addition, China is also believed to be developing an air-launched HGV, with a video briefly posted on Chinese social media in October last year showing a People’s Liberation Army Air Force Xi’an H-6N bomber landing at an air base carrying what appeared to be a boost-glide HGV — or at least a mock-up used for carriage and other flight tests.
Pentagon officials had long suspected China was developing an air-launched ballistic missile for carriage onboard H-6 bombers, although specific details were unknown until the emergence of the video. It’s still unclear, however, if this air-launched weapon is the one referenced by the Pentagon, or if China is developing another system with a more conventional warhead.
The deployment of road-mobile and air-launched HGVs broadens China’s ability to hold an adversary’s targets at risk, giving missile defenses another threat vector to think about in addition to China’s existing arsenal of ballistic, cruise, land-attack and anti-ship missiles.
The Pentagon has also claimed China carried out several tests of rail guns on land. These use electromagnetic forces to launch high velocity projectiles by means of a sliding armature that is accelerated along a pair of conductive rails. While the projectiles do not contain explosives like one would find on hypersonic missiles, the projectile’s extremely high speed inflict significant damage.
It is also believed a PLA Navy amphibious ship, photographed on several occasions mounting a large turret and gun barrel on its bow, is the test bed of a naval rail gun. The ship made several voyages believed to be for tests, although this could not be independently verified and its development status is unclear.
China has also made efforts in developing directed-energy weapons, with state media and manufacturers releasing images and videos of hand-held and vehicle-mounted laser systems. These include a hand-held destructive laser weapon offered for domestic law enforcement — ostensibly crowd control — although its designers say when set to maximum power, the laser can instantly scar human skin and tissue. It can also reportedly ignite clothing, knock a small drone out of the sky or blow up a fuel tank.
One Chinese academic has claimed the PLA used microwave weapons to incapacitate Indian troops during last year’s standoff over part of the two countries’ disputed border, although these claims have not been independently verified.
India
India is also pursuing both hypersonic and directed-energy weapons. The second edition of India’s “Technology Perspective and Capability Roadmap,” released in 2018 by the Ministry of Defence, previewed more than 200 pieces of equipment envisaged for induction in the military in the late 2020s. Among the list of projects that industry was encouraged to pursue was a “Tactical High Energy Laser System” for the Army and Air Force.
The ministry foresaw a high mobility vehicle-based laser weapon system able to “cause physical damage/destruction to [electronic warfare] systems, communication systems and non communication systems/radars and their antennas.” Eventually, the weapon should reach a minimum range of 20 kilometers, have a target-locking capability, and be able to serve in an anti-satellite role from land- and air-based platforms.
An official review of the MoD’s affairs from 2020 cited an anti-drone system made by the government’s Defence Research and Development Organisation. The Jan. 1, 2021, news release said the system was deployed for Prime Minister Narendra Modi’s security as he addressed the nation for its 74th Independence Day.
“It can bring down micro drones through either jamming of command and control links or by damaging the drones through laser-based Directed Energy Weapon,” according to the release.
The DRDO is currently requesting $100 million from the MoD for the 2021-2022 budget to produce a high-power laser weapon.
The classified project, dubbed DURGA II (Directionally Unrestricted Ray-Gun Array), will see the Indian Army receive the 100-kilowatt, lightweight directed-energy system, a service official told Defense News.
A senior DRDO scientist said on condition of anonymity that the DURGA II program is currently in the concept stage. He added that the organization is developing and improving various laser-generation techniques using solid state, fiber and chemical lasers for defensive and offensive use.
The scientist also said DURGA II is to be integrated with land-, sea- and air-based platforms.
Another DRDO scientist said 50 defense scientists have been charged with developing new directed-energy weapons. The organization also aims to start work on non-nuclear electromagnetic pulse technology, he added.
DRDO laboratories engaged in the development of directed-energy technology include the Laser Science and Technology Centre, the Defence Electronics Research Laboratory, the Defence Research and Development Laboratory, and the Centre for High Energy Systems and Sciences.
The Laser Science and Technology Centre is the lead laboratory in this effort, and it is currently engaged in the development of multiple laser technologies using chemical oxygen iodine lasers and high-power fiber lasers. The center has so far made a 25-kilowatt laser that can target a ballistic missile during its terminal phase at a maximum distance of 5 kilometers.
In addition, the DRDO established a firing range at its Terminal Ballistics Research Laboratory at Ramgarh in Haryana state, near New Delhi.
Meanwhile, the country’s focus on hypersonic technology has seen the creation of a wind tunnel for testing in Hyderabad and its first successful test of a fully indigenous hypersonic technology demonstrator vehicle powered by an air-breathing scramjet engine. The MoD announced the Sept. 7, 2020, flight test that month.
The demo vehicle was indigenously developed by the DRDO, and it has the ability to fly at six times the speed of sound, according to defense scientists in the country.
The MoD said the hypersonic cruise vehicle was launched using a solid rocket motor, which took it to an altitude of 30 kilometers. Then the cruise vehicle separated from the launch vehicle and the air intake opened as planned, the ministry added.
“The successful demonstration proved several critical technologies including aerodynamic configuration for hypersonic manoeuvers, the use of scramjet propulsion for ignition and sustained combustion at hypersonic flow, thermo-structural characterisation of high-temperature materials, separation mechanism at hypersonic velocities, etc.,” DRDO said in a statement.
A top DRDO scientist told Defense News that the vehicle will be used to launch both hypersonic and long-range cruise missiles. “DRDO has spent around $4.5 million on its [HTDV] prototype development cost, and three more tests will be carried out in the next five years to make this platform into a full-fledged hypersonic weapon that is capable of carrying both conventional and nuclear warheads, “he said.
DRDO spent about $30 million on the design and development phases.
India is also developing the hypersonic BrahMos II missile.
Japan
The northeast Asian nation of Japan started its pursuit of hypersonic weapons in the late 2010s. It has set its sights on two classes of hypersonic systems: the hypersonic cruise missile, or HCM, and the hypervelocity gliding projectile, or HVGP.
The former will be powered by a scramjet engine and appears similar to a typical missile, albeit one that cruises at a much higher speed while capable of traveling at long ranges.
The HVGP, on the other hand, will feature a solid-fuel rocket engine that will boost its warhead payload to a high altitude before separation, where it will then glide to its target using its altitude to maintain high velocity until impact.
The government’s Acquisition, Technology and Logistics Agency also provided details regarding warhead payloads, with different warheads planned for both maritime and land targets. The former will be an armor-piercing warhead designed specifically for penetrating “the deck of the [aircraft] carrier,” while a land-attack version will use multiple high-density, explosively formed projectiles for area suppression.
Japan’s government is continuing research and development in hypersonic technology, with 240 billion yen (U.S. $2 billion) in its latest defense budget allocated for the program. ALTA has contracted Mitsubishi Heavy Industries to collaborate on research in both the HCM and HVGP, with the latter expected to enter service around 2026.
ATLA says research on the HCM is planned to continue until 2025, although at this time it is not guaranteed that it will be developed into an operational system. Japan, whose constitution limits the ability of its self-defense forces to conduct offensive operations, has framed the development of its hypersonic weapons as a means by which it can provide defense for “remote islands.” The country is likely referring to the Senkaku Islands in the East China Sea, which it currently administers but are also claimed by China.
Korean Peninsula
The divided Korean Peninsula is also racing to develop hypersonic weapons. U.S. ally South Korea is pushing ahead with plans to develop its own hypersonic missiles as it seeks a viable missile strike capability in response to North Korea’s extensive ballistic missile arsenal. That arsenal remains the one area in which the impoverished, isolated nation’s military has surpassed its southern neighbor.
In August 2020, South Korean Defense Minister Jeong Kyeong-doo said the country will accelerate development of long-range and hypersonic missiles, as well as more powerful warheads for such weapons. South Korea has already developed short-ranged ballistic missiles and is seeking newer types to hold North Korean targets — including its mobile ballistic missiles — at risk during a conflict.
For its part, the nuclear-armed North has claimed it is also developing such weapons. The government made the announcement during the 8th Congress of the Workers’ Party of Korea in January, with reports saying the North has created a new research center for hypersonic missiles under its Academy of National Defense Science.
However, there is little verifiable or detailed information available about the development of hypersonic weapons by both the countries at the moment.
Australia
In July 2020, the Australian government released two defense documents that together provide midcourse guidance to the country’s 2016 Defence White Paper and its Integrated Investment Program. Included in the new documents are a AU$9.3 billion (U.S. $7.1 billion) investment in hypersonic weapons and the further development of capabilities such as directed-energy systems.
As such, the 2020 Defence Strategic Update and associated Force Structure Plan will oversee funding to develop disruptive weapons technology. The effort follows a pledge of AU$730 million in the earlier whitepaper for research into targeted science and technology, including hypersonic weapons, advanced sensors and directed-energy capabilities.
Acknowledging the rapidly changing balance of power in the Asia-Pacific region, the strategic update notes that previous defense planning does not provide adequate assurance that Australia would come out on top in a modern conflict.
“Coercion, competition and grey-zone activities directly or indirectly targeting Australian interests are occurring now,” the document stated. “Growing regional military capabilities, and the speed at which they can be deployed, mean Australia can no longer rely on a timely warning ahead of conflict occurring.”
While the government still considers the prospect of a high-intensity conflict in the region unlikely, it noted the chances are less remote now than five years ago, including conflict between the U.S. and China. The reduced warning time, coupled with a realization that Australia no longer has the luxury of choosing when or where military action occurs, is driving future weapons requirements, such as rapid threat detection and response as well as greater standoff capabilities.
“That’s why we will continue to invest in advanced capabilities to give the Australian Defence Force more options to deter aggression against Australia’s interests, including the $9.3 billion earmarked in the Force Structure Plan 2020 for high-speed long-range strike and missile defence, including hypersonic development, test and evaluation,” Defence Minister Linda Reynolds said.
Australia has conducted research into hypersonic flight for several years, most notably through the Hypersonic International Flight Research Experimentation program, or HIFiRE, which began in 2007. The program was a collaboration between the government’s Defence Science and Technology Group, the University of Queensland, the U.S. Air Force Research Laboratory, and industry partners BAE Systems and Boeing.
The aim of HIFiRE was to gain a deep understanding of the technologies required for sustained hypersonic flight and solve related scientific problems. In defense terms, HIFiRE has been succeeded by the Australia-U.S. Southern Cross Integrated Flight Research Experiment program, or SCIFiRE, announced in December 2020.
Australia’s investment in SCIFiRE comes from the AU$9.3 billion promised in the Force Structure Plan. The program aims to develop and test a hypersonic cruise missile prototype, leveraging work done with the U.S. over the last 15 years on scramjets, rocket motors, sensors and advanced manufacturing materials.
The weapon will be a propulsion-launched, scramjet-powered, precision strike missile able to reach Mach 5. It is expected to enter service in the late 2020s or early 2030s.
The joint effort was finalized in July 2020 and announced in December that year by Reynolds.
RELATED
“The SCIFiRE initiative is another opportunity to advance the capabilities in our Air Combat Capability program to support joint force effects to advance Australia’s security and prosperity,” chief of the Royal Australian Air Force, Air Marshal Mel Hupfeld, said at the time of the announcement. “We are maximizing our learning during development to better define the capabilities and needs as the system matures, and we are gaining insights as we go that will help us integrate it into the future joint force.”
While the Australian Defence Force is closely watching developments, it is yet to publicly announce a formal hypersonic weapons acquisition program. However, the Force Structure Plan forecasts Australia’s clear desire for a high-speed, long-range strike and missile.
The Defence Ministry did not provide comment to Defense News by press time.
Another disruptive weapons capability specifically named in the Force Structure Plan is the development of a directed-energy weapons system. It’s to be integrated into the military’s protected and armored fighting vehicles for defeating vehicles as big as a main battle tank.
The plan also forecasts a similar capability to protect naval vessels against advanced and emerging weapons systems.
Australian defense company Electro Optic Systems has more than 35 years’ experience in the use of lasers through its so-called Space Domain Awareness service, which provides a tracking capability in space for Australia and its allies. The company is also developing a scalable, directed-energy counter-UAV weapon for the Australian Defence Force, initially based on a 26-kilowatt continuous wave laser. It’s expected to enter service later this year. The technology can supposedly be scaled up to provide a theater-level capability should a future military requirement emerge.
Pakistan
The present level of development in directed-energy and hypersonic weapons by Pakistan is uncertain, and despite a greater focus on strengthening local industry, the country may require significant foreign input in these fields.
In October, outgoing naval chief Adm. Zafar Mahmood Abbasi revealed plans to equip future warships with directed-energy weapon systems and the P282 hypersonic missile.
“In the hypersonic domain, the ship-based, long-range, anti-ship and land-attack P282 ballistic missile is under development” he said at the time, and the newly established Naval Research and Development Institute was developing “laser-based directed-energy weapons.”
Neither the Ministry of Defence Production nor the Navy responded to Defense News’ requests for information on these programs. Their stage of development or how and when they will be employed is unknown. Nevertheless, Mansoor Ahmed, a senior research fellow at Islamabad’s Center for International Strategic Studies, believes these developments must be reasonably advanced for them to have been revealed at all.
Whether Pakistani warships have sufficient power-generation capacity to operate directed-energy weapons may be inferred from Chinese and Turkish programs. Pakistan has ordered Type 054A/P frigates (similar to those in Chinese service) and Milgem corvettes (similar to Turkey’s Ada class), and is designing the related Jinnah-class frigate (possibly similar to Turkey’s Istanbul class).
Chinese destroyers have had an operational directed-energy capability since at least 2018, but frigates are not similarly equipped. However, an expert on China’s military believes this will change.
“Based on my interviews with Chinese sources, I conclude that China will be pacing most U.S. directed-energy weapon developments, be they solid-state lasers or microwave weapons,” said Richard Fisher, a senior fellow at the International Assessment and Strategy Center. “They were marketing a 30-kilowatt, mobile, solid-state laser weapon five years ago, so it is reasonable to expect they will soon have much more powerful land-, sea- and air-deployable laser weapons.”
Similarly, the installation of the Roketsan-made Alka laser weapon on Turkish warships would infer Pakistan receiving a similar setup. Roketsan literature indicates the Alka can be fitted to warships to destroy or disable drones and similar targets. The company says the system can destroy a target with a laser at 500 meters, and destroy a target at 1,000 meters with its electromagnetic weapon.
STM and fellow Turkish contractor Afsat signed an agreement “on engineering solutions for supplying and integrating the main propulsion system” for Pakistan’s corvettes in June 2020. Their propulsion/power-generation system was previously a CODAD (combined diesel and diesel) system before the U.S. cleared the export of gas turbines, allowing a CODAG (combined diesel and gas) system similar to the Ada corvettes to be fitted.
When asked, STM would not say whether this could produce sufficient power to support a directed-energy weapon.
Given the delivery timetable for Pakistan’s new frigates and corvettes, a directed-energy capability may be reality by mid-decade, but Ahmed, the expert at the Center for International Strategic Studies, believes the hypersonic program is more urgent. He said hypersonic technology is part of Pakistan’s “emerging menu of long-range [anti-access, area denial] capabilities that are increasingly going to be needed for maintaining a credible deterrent” against India’s Navy.
This is backed by reports that an Azeri surface-to-air Barak-8 missile system — a weapon also installed on some of India’s destroyers — downed an Armenian Iskander tactical ballistic missile last year, potentially rendering Pakistan’s present subsonic anti-ship missile arsenal vulnerable to interception.
Though Pakistan has acquired CM-302/YJ-12 supersonic anti-ship missiles for its Type 054A/P frigates, Ahmed said the hypersonic P282 will enable Pakistan to “leapfrog” to a similar level of capability to India, which already has different BrahMos supersonic missile variants and is developing the hypersonic BrahMos II.
Irrespective of whether the P282 will be a wholly indigenous or collaborative effort, Ahmed views it as a critical program that will spawn land and air weapons potentially “deployed across a variety of platforms.”
However, this could depend on whether the weapon is a hypersonic cruise missile (a la Russia’s Zircon) or some type of hypersonic glide vehicle. Describing the P282 as a ballistic missile may imply it is more likely to be a land-based hypersonic glide vehicle (like China’s DF-100), or perhaps a ballistic missile acting as a booster for a scramjet-powered hypersonic cruise missile. Adm. Abbasi’s description of the P282 is the only information presently in the public domain.
According to James Acton, co-director of the Nuclear Policy Program at the Carnegie Endowment for International Peace, a ship-based ballistic missile is most feasible. “I don’t know anything about the P282 specifically, but a ship-based ballistic missile is perfectly possible. Indeed, India has such a missile — the Dhanush.”
Like the Dhanush, he suspects the P282 will turn out to be similar to the Chinese DF-21D and DF-26B anti-ship ballistic missiles.
“It’s possible — likely, perhaps — that the missile would have some kind of a maneuverable reentry vehicle, though I’d be surprised if it had a long-range gliding capability,” he added.
Acton also highlighted the launch platform doesn’t need to be a surface vessel. “It’s also worth bearing in mind that a submarine is a type of ship, and so it’s possible that the delivery platform would be a submarine rather than a surface ship.”
He is less convinced the P282 will end up being a hypersonic cruise missile. “Given the description, I’d doubt it’d be a cruise missile. Small rocket boosters are used to accelerate scramjet-powered missiles, but it’d be very odd to describe the system as a ‘ballistic missile.’ "
The expert at the International Assessment and Strategy Center suspects China as a direct source of the P282, saying it’s reasonable to believe China would sell directed-energy weapons and ship-launched, anti-ship ballistic missile technology to Pakistan just like it “would also assist North Korea and Iran to obtain the same capabilities.”
“In 2017, retired [Chinese People’s Liberation Army] Navy Rear Adm. Zhao Dengping revealed that the PLAN was working on a ship-launched, anti-ship/land-attack ballistic missile, and my sources indicate that by 2018 they had started testing such a missile” Fisher added. “It could be based on a current surface-to-air-missile or something larger, as they have anti-ship-capable versions of some of their newer short-range ballistic missiles.”
One candidate in particular was shown at the 2018 Zhuhai Airshow in China, he said, where the country revealed the CM-401 horizontally launched anti-ship ballistic missile made by China Aerospace Science and Industry Corporation. “As it is a ship-launched, hypersonic-speed ballistic missile and Pakistan has a long relationship with CASIC, there is a good possibility that P282 will be next in the long line of Pakistan’s CASIC-assisted solid-fuel ballistic missiles.”
If so, fielding a hypersonic missile capability may not be Pakistan’s greatest challenge. Ahmed points to Pakistan’s need to fill a “real-time target acquisition” gap to address India’s aircraft carrier fleet and other major surface combatant forces, especially as “India’s offensive and [intelligence, surveillance and reconnaissance] ISR superiority in the naval domain has been enhanced through the India-U.S. basic exchange and cooperation agreement.”
Pakistan’s planned Sea Sultan long-range patrol aircraft as well as its access to China’s BeiDou satellite navigation network will likely be critical to its hypersonic efforts. Nevertheless, “given these growing asymmetries, the P282 is a much-needed addition to an increasingly complex offense defense imbalance in the Indian Ocean region,” Ahmed said.